A Ring Closure of Methyl α -(2,4-Dinitrophenylamino)acrylate

By A. E. LUETZOW, N. E. HOFFMAN, and J. R. VERCELLOTTI

(Chemistry Department, Marquette University, Milwaukee, Wisconsin 53233)

BASE-CATALYZED hydrolysis of 3-O-(2-acetamido-3,-4,6-tri-O-acetyl-2-deoxy- β -D-glucopyranosyl)-N-2,-4-dinitrophenyl-L-serine methyl ester (I) yields rapidly in the cold methyl α -(2,4-dinitrophenylamino)acrylate (II) and 2-acetamido-2-deoxy-Dglucose (III).¹ Under the basic elimination conditions (MeONa or NH₃ in anhydrous methanol), (II) was rapidly converted into (IV) as the sodium salt (in NaOMe-MeOH) or (V) as the ammonium salt carboxyamide (in NH₃-MeOH).

7.98, 8.81, 9.47, 11.41, 13.63 (C–N–O) μ ; nuclear magnetic resonance spectroscopy data: τ 0.98, 1.15, 1.30, 1.43, 1.60 (aromatic); 2 5.93; $^3\lambda_{max}$ (EtOH) 252, 298 m μ ; The compound (VI) was yellow in base and colourless in acid. Methylation of (VI) with diazomethane afforded a crystalline colourless methyl derivative (VII), m.p., 187–188°; λ_{max} (KBr) 5.78 (CO₂Me), 6.60 (NO₂), 6.70, 6.95, 7.34, 7.45 (NO₂), 7.97, 8.23, 8.85, 9.49, 10.48, 11.25, 12.15, 13.64 (–C–N–O) μ ; λ_{max} (EtOH) 250, 298 m μ ; nuclear magnetic resonance spectroscopy data⁴: τ 1.27, 1.45, 1.60, 1.88, 1.95, 2.52 (3 H); 5.78 (3 H); molecular weight (Rast), 221. Mild basic hydrolysis of (VI) (0.1 N-NaOH at 100° for 2 hrs.) afforded a pale yellow crystalline product (VIII) from

Upon neutralization of (IV) (dilute HCl) light cream-coloured needles (VI) were obtained from methanol, m.p. 205–206° (decomp.); $[\alpha]_{D}^{25}$ 0.00 (c, 0.3; HCONMe₂); λ_{max} (KBr) 3.80–4.00 (broad), 5.85 (CO₂Me), 6.22, 6.60 (NO₂), 7.30 (NO₂), 7.70,

ethanol, m.p., 273–274°, λ_{max} (KBr) 3·80–4·30 (broad), 5·70 (broad), 6·20, 6·63 (NO₂), 7·72, 7·82, 8·26, 8·90, 9·52, 11·24, 12·43, 13·57 (-C-N-O) μ ; λ_{max} (EtOH) 240, 283 m μ . The melting point, mixed melting point, chromatographic mobility (Silica Gel G, BuOH: H₂O: HOAc, 3:1:1), and infrared spectrum of (VIII) were identical in all

respects with those of 5-nitrobenzimidazole 3-oxide synthesized by photolysis of N-2,4-dinitrophenylglycine.⁵⁻⁸ From these data it is concluded that (IV) is a product of ring closure of (II) with loss of the elements of formaldehyde. The structure assigned to (VI) is 2-methoxycarbonyl-5-nitrobenzimidazole 3-oxide. The synthesis of (II) was easily provided through the elimination in mild

base of the O-toluene-p-sulphonate of N-2,4dinitrophenyl-DL-serine methyl ester. A mechanism for ring closure of (II) to (IV) (salt of the N-oxide) is being investigated in these laboratories. The great reactivity of α -aminoacrylic acids is suggested in the ease of oxazoline ring formation in the presence of N-carbonyl blocking groups on $\alpha\beta$ unsaturated amino-acids.9

(Received, March 15th, 1966; Com. 157.)

- ¹ J. R. Vercellotti and A. E. Luetzow, J. Org. Chem., 1966, 31, 825.
- ² Dimethyl sulphoxide solution with tetramethylsilane internal reference. Varian Associates A-60 spectrometer. ³ Pyridine solution with tetramethylsilane internal reference.
- ⁴ Deuterochloroform solution with tetramethylsilane internal reference.
- ⁵ S. Takahashi and H. Kano, Chem. and Pharm. Bull. (Japan), 1964, 12, 282.
- ⁶ R. J. Pollitt, Chem. Comm., 1965, 262. ⁷ D. W. Russell, Chem. Comm., 1965, 498.
- ⁸ J. D. Loudon and G. Tennant, Quart. Rev., 1964, 18, 389.
- ⁹S. Ginsberg and I. B. Wilson, J. Amer. Chem. Soc., 1964, 86, 4716.